

Power Aware Computing and Communications (PAC/C)

Dr. José L. Muñoz

TTO

System Performance Limited by Power

- Satellites, UAVs, missiles and micro-sensor systems limited by onboard processing
 - -size, weight, area, power limitations
 - –potential energy savings for burst and selective processing not realizable

Portable Power

- Portable systems require expensive, disposable batteries
 - -circuits are not always power efficient
 - -must prepare for worst case
- Current example: Reconn mission
 - -manpower: 3-man, 3-5 days
 - -energy source: 59 batteries
 - -costs: 45.5 pounds

PAC/C Vision

- The intelligent management of energy and energy distribution
 - -minimum power required to complete a mission / task
 - –empower exploration of new mission opportunities
- Power a "first class citizen" right along with performance

Goals

Provide an <u>integrated</u> software / hardware technology suite with the potential to reduce power requirements by 100X - 1000X in (energy * delay) or performance / watt when compared to technology using conventional approaches

- Power-aware
 - algorithms
 - protocols
- Comprehensible, programmable power management and partitioning
- Tradeoff: compute/communicate
 - Quality-of-service demands

System Balance

Multi-Scale Processing

System and Architecture Level

- Power-aware compilers, middleware, libraries and OS
- Architectural approaches
- Dynamic voltage and frequency scaling
- Power-aware CAD tools

Compilation

Power

Compiler

Assembly language

Source: Chandrakasan (MIT)

Problem Size

Dynamic V/freq

ARM60 w/o men

1190

FFT processing 1000X improvement

137

FMS320C2xx

19

Source: Rabaey (Berkeley)

Pleiades

System Integration, Experiments and Benchmarks

- Application/system-level power aware integration
- Benchmarking, experimentation, and downselect
- Demonstrations of 10X, 100X, and 500X power reductions

- Enable "performance on demand"
- Generic solutions
- Exploit energy saving features in existing devices
- Enable new missions/capabilities
- Technology also applicable to "lowpower" systems

- 4QFY99 (tentative)
- Focusing on exploiting power-aware mechanisms in existing devices using compilation, algorithms and middleware
- Development of PAC/C benchmarks

PAC/C

"JIP: Just In time Power"
The *right* power at the *right*place at the *right* time